99 research outputs found

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    AM-FM Texture Image Analysis of the Intima and Media Layers of the Carotid Artery

    Get PDF
    Abstract. The purpose of this paper is to propose the use of amplitude modulation-frequency modulation (AM-FM) features for describing atherosclerotic plaque features that are associated with clinical factors such as intima media thickness and a patient's age. AM-FM analysis reveals the instantaneous amplitude (IA) of the media layer decreases with age. This decrease in IA maybe attributed to the reduction in calcified, stable plaque components and an increase in stroke risk with age. On the other hand, an increase in the median instantaneous frequency (IF) of the media layer suggests the fragmentation of solid, large plaque components, which also lead to an increase in the risk of stroke. The findings suggest that AM-FM features can be used to assess the risk of stroke over a wide range of patient populations. Future work will incorporate a new texture image retrieval system that uses AM-FM features to retrieve intima and intima media layer images that could be associated with the same level of the risk of stroke

    Computer-Aided Diagnosis by Tissue Image Analysis as an Optical Biopsy in Hysteroscopy

    No full text
    This review of our experience in computer-assisted tissue image analysis (CATIA) research shows that significant information can be extracted and used to diagnose and distinguish normal from abnormal endometrium. CATIA enabled the evaluation and differentiation between the benign and malignant endometrium during diagnostic hysteroscopy. The efficacy of texture analysis in the endometrium image during hysteroscopy was examined in 40 women, where 209 normal and 209 abnormal regions of interest (ROIs) were extracted. There was a significant difference between normal and abnormal endometrium for the statistical features (SF) features mean, variance, median, energy and entropy; for the spatial grey-level difference matrix (SGLDM) features contrast, correlation, variance, homogeneity and entropy; and for the gray-level difference statistics (GLDS) features homogeneity, contrast, energy, entropy and mean. We further evaluated 52 hysteroscopic images of 258 normal and 258 abnormal endometrium ROIs, and tissue diagnosis was verified by histopathology after biopsy. The YCrCb color system with SF, SGLDM and GLDS color texture features based on support vector machine (SVM) modeling correctly classified 81% of the cases with a sensitivity and a specificity of 78% and 81%, respectively, for normal and hyperplastic endometrium. New technical and computational advances may improve optical biopsy accuracy and assist in the precision of lesion excision during hysteroscopy. The exchange of knowledge, collaboration, identification of tasks and CATIA method selection strategy will further improve computer-aided diagnosis implementation in the daily practice of hysteroscopy

    AM-FM texture image analysis in brain white matter lesions in the progression of multiple sclerosis

    No full text
    We present the use of multiscale Amplitude Modulation Frequency Modulation (AM-FM) methods for analyzing brain white matter lesions that are associated with disease progression. We analyze lesions and normal appearing white matter (NAWM) longitudinally (0 and 6 months) and also for progression of disease. We use the expanded disability status scale (EDSS) to assess disease progression. The findings suggest that the high-frequency scale instantaneous amplitude can be used to differentiate between lesions associated with early and advanced disease stages. The classification results using the IF information and support vector machines produced a maximum sensitivity of 0.86, specificity of 0.76 and a maximum correct classification of 0.71. © 2010 IEEE

    Multiscale amplitude-modulation frequency-modulation (AM-FM) texture analysis of ultrasound images of the intima and media layers of the carotid artery

    No full text
    The intima-media thickness (IMT) of the common carotid artery (CCA) is widely used as an early indicator of cardiovascular disease (CVD). Clinically, there is strong interest in identifying how the composition and texture of the media layer (ML) can be associated with the risk of stroke. In this study, we use 2-D amplitude-modulation frequency-modulation (AM-FM) analysis of the intima-media complex (IMC), the ML, and intima layer (IL) of the CCA to detect texture changes as a function of age and sex. The study was performed on 100 ultrasound images acquired from asymptomatic subjects at risk of atherosclerosis. To investigate texture variations associated with age, we separated them into three age groups: 1) patients younger than 50; 2) patients aged between 50 and 60 years old; and 3) patients over 60 years old. We also separated the patients by sex. The IMC, ML, and IL were segmented manually by a neurovascular expert and also by a snake-based segmentation system. To reject strong edge artifacts, we prefilter with an AM-FM filterbank that is centered along the horizontal frequency axis (parallel to the long axis of the IMC, ML, and IL), while removing the low-pass filter estimates and frequency bands with large, vertical frequency components. To investigate significant texture changes, we extract the instantaneous amplitude (IA) and the magnitude of the instantaneous frequency (IF) over each layer component, for low-, medium-, and high-frequency AM-FM components. We detected significant texture differences between the higher risk age group of >60 years versus the lower risk age group of 60 groups, we found significant differences in the medium-scale IA extracted from the IMC. Between the >60 and the 50-60 groups, we found significant texture changes in the low-scale IA and high-scale IF magnitude extracted from the IMC, and the low-scale IA extracted from the IL. Also, we noted that the IA for the ML showed significant differences between males and females for all age groups. The AM--FM features provide complimentary information to classical texture analysis features like the gray-scale median, contrast, and coarseness. These findings provide evidence that AM--FM texture features can be associated with the progression of cardiovascular risk for disease and the risk of stroke with age. However, a larger scale study is needed to establish the application in clinical practice

    Ultrasound image texture analysis of the intima and media layers of the common carotid artery and its correlation with age and gender

    No full text
    The intima–media thickness (IMT) of the common carotid artery (CCA) is widely used as an early indicator of cardiovascular disease (CVD). It was proposed but not thoroughly investigated that the composition and texture of the media layer (ML) can be used as an indicator for the risk of stroke. In this study, we investigate the application of texture analysis of the ML of the CCA and how texture is affected by age and gender. The study was performed on 100 longitudinal-section ultrasound images acquired from asymptomatic subjects at risk of atherosclerosis. The images were separated into three different age groups, namely below 50, 50–60, and above 60 years old. Furthermore, the images were separated according to gender. A total of 61 different texture features were extracted from the intima layer (IL), the ML, and the intima–media complex (IMC). The ML and the IMC were segmented manually by a neurovascular expert and also automatically by a snakes segmentation system. We have found that male patients tended to have larger media layer thickness (MLT) values as compared to the MLT of female patients of the same age. We have found significant differences among texture features extracted from the IL, ML and IMC from different age groups. Furthermore, for some texture features, we found that they follow trends that correlate with a patient’s age. For example, the gray-scale median GSM of the ML falls linearly with increasing MLT and with increasing age. Our findings suggest that ultrasound image texture analysis of the media layer has potential as an assessment biomarker for the risk of stroke

    Robust and efficient ultrasound video coding in noisy channels using H.264

    No full text
    In this paper we define diagnostic Regions of Interest (ROIs) for carotid ultrasound medical video, which we then use as input for Flexible Macroblock Ordering (FMO) slice encoding. We extend the FMO concept by enabling variable quality slice encoding, tightly coupled by each region's diagnostic importance. Redundant Slices (RS) utilization increases compressed video's resilience over error prone transmission mediums. We evaluate our scheme on a series of five (5) carotid ultrasound videos at QCIF and CIF resolutions, for packet loss rates up to 30%. Quality assessment based on a clinical rating system that provides for independent evaluations of the different parts of the video (subjective), as well as PSNR ratings (objective), shows that encoded videos attain enhanced diagnostic performance under noisy environments, while at the same time achieving significant bandwidth demands reductions
    corecore